网上有关“初中三年数学哪一年最难”话题很是火热,小编也是针对初中三年数学哪一年最难寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
初三。初中三年数学初一的数学是最简单的,初二的数学增加了因式分解、全等三角形和一元二次方程等知识点,学习起来比较有难度,而初三的数学知识点是相似的三角形、二次函数和圆,这些知识点经常是中考压轴题,所以学习起来比较困难。
初中高中数学几何定理
函数向来是初中数学的重头戏,但由于难度较大,不少学生在考试时,经常在函数题上丢分严重。为此,以下是我分享给大家的初中数学函数知识点,希望可以帮到你!
初中数学一次函数知识点
一、定义与定义式
自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。即:y=kx (k为常数,k?0)
二、一次函数的性质
1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像?一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b ? ① 和 y2=kx2+b ? ②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
六、常用公式
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:?(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)
初中数学二次函数知识点总结
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c
(a,b,c为常数,a?0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax^2+bx+c(a,b,c为常数,a?0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b?b^2-4ac)/2a
III.二次函数的图像
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当?=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
?=b^2-4ac>0时,抛物线与x轴有2个交点。
?=b^2-4ac=0时,抛物线与x轴有1个交点。
?=b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x=-b?b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a?0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a?0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a?0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a?0),若a>0,当x?-b/2a时,y随x的增大而减小;当x?-b/2a时,y随x的增大而增大.若a<0,当x?-b/2a时,y随x的增大而增大;当x?-b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a?0)的两根.这两点间的距离AB=|x?-x?|
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a?0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a?0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a?0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
初中数学学习方法
1、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理
一元二次方程ax2+bx+c=0(a、b、c属于R,a?0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等
5、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。
6、构造法
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
猜你喜欢:
1. 初中数学三年的知识点归纳
2. 初三的数学知识点归纳总结
3. 数学函数复习资料整合
4. 初中数学知识点全总结
5. ? 中考数学知识点归纳
初中三年数学几何公式、定理梳理,今天小编分享给大家,家长可以为孩子收藏,让孩子的几何学习更容易些。
1.过两点有且只有一条直线
2.两点之间线段最短
3.同角或等角的补角相等
4.同角或等角的余角相等
5.过一点有且只有一条直线和已知直线垂直
6.直线外一点与直线上各点连接的所有线段中,垂线段最短
7.平行公理经过直线外一点,有且只有一条直线与这条直线平行
8.如果两条直线都和第三条直线平行,这两条直线也互相平行
9.同位角相等,两直线平行
10.内错角相等,两直线平行
11.同旁内角互补,两直线平行
12.两直线平行,同位角相等
13.两直线平行,内错角相等
14.两直线平行,同旁内角互补
15.定理:三角形两边的和大于第三边
16.推论:三角形两边的差小于第三边
17.三角形内角和定理:三角形三个内角的和等于180°
18.推论1:直角三角形的两个锐角互余
19.推论2:三角形的一个外角等于和它不相邻的两个内角的和
20.推论3:三角形的一个外角大于任何一个和它不相邻的内角
21.全等三角形的对应边、对应角相等
22.边角边公理:有两边和它们的夹角对应相等的两个三角形全等
23.角边角公理:有两角和它们的夹边对应相等的两个三角形全等
24.推论:有两角和其中一角的对边对应相等的两个三角形全等
25.边边边公理:有三边对应相等的两个三角形全等
26.斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等
初中生i学习(ID:sszzb_czb)
27.定理1:在角的平分线上的点到这个角的两边的距离相等
28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上
29.角的平分线是到角的两边距离相等的所有点的集合
30.等腰三角形的性质定理:等腰三角形的两个底角相等
31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边
32.推论2:等腰三角形的顶角平分线、底边上的中线和高互相重合
33.推论3:等边三角形的各角都相等,并且每一个角都等于60°
34.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35.推论1:三个角都相等的三角形是等边三角形
36.推论2:有一个角等于60°的等腰三角形是等边三角形
37.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
38.直角三角形斜边上的中线等于斜边上的一半
39.定理线段垂直平分线上的点和这条线段两个端点的距离相等
40.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42.定理1:关于某条直线对称的两个图形是全等形
43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45.逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c
47.勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形
48.定理:四边形的内角和等于360°
49.四边形的外角和等于360°
50.多边形内角和定理n边形的内角的和等于(n-2)×180°
51.推论:任意多边的外角和等于360°
52.平行四边形性质定理1:平行四边形的对角相等
53.平行四边形性质定理2:平行四边形的对边相等
54.推论:夹在两条平行线间的平行线段相等
55.平行四边形性质定理3:平行四边形的对角线互相平分
56.平行四边形判定定理1:两组对角分别相等的四边形是平行四边形
57.平行四边形判定定理2:两组对边分别相等的四边形是平行四边形
58.平行四边形判定定理3:对角线互相平分的四边形是平行四边形
59.平行四边形判定定理4:一组对边平行相等的四边形是平行四边形
60.矩形性质定理1:矩形的四个角都是直角
61.矩形性质定理2:矩形的对角线相等
62.矩形判定定理1:有三个角是直角的四边形是矩形
63.矩形判定定理2:对角线相等的平行四边形是矩形
64.菱形性质定理1:菱形的四条边都相等
65.菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角
66.菱形面积=对角线乘积的一半,即S=(a×b)÷2
67.菱形判定定理1:四边都相等的四边形是菱形
68.菱形判定定理2:对角线互相垂直的平行四边形是菱形
69.正方形性质定理1:正方形的四个角都是直角,四条边都相等
70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71.定理1:关于中心对称的两个图形是全等的
72.定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73.逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74.等腰梯形性质定理:等腰梯形在同一底上的两个角相等
75.等腰梯形的两条对角线相等
76.等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形
77.对角线相等的梯形是等腰梯形
78.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰
80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边
81.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半
82.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h
83.(1)比例的基本性质如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
85.(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例
87.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)
92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)
94.判定定理3:三边对应成比例,两三角形相似(SSS)
95.定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97.性质定理2:相似三角形周长的比等于相似比
98.性质定理3:相似三角形面积的比等于相似比的平方
99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101.圆是定点的距离等于定长的点的集合
102.圆的内部可以看作是圆心的距离小于半径的点的集合
103.圆的外部可以看作是圆心的距离大于半径的点的集合
104.同圆或等圆的半径相等
105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107.到已知角的两边距离相等的点的轨迹,是这个角的平分线
108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109.定理:不在同一直线上的三个点确定一条直线
110.垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111.推论1:
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112.推论2:圆的两条平行弦所夹的弧相等
113.圆是以圆心为对称中心的中心对称图形
114.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116.定理:一条弧所对的圆周角等于它所对的圆心角的一半
117.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
119.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120.定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121 .①直线L和⊙O相交d﹤r
②直线L和⊙O相切d=r
③直线L和⊙O相离d﹥r
122.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
123.切线的性质定理:圆的切线垂直于经过切点的半径
124.推论1:经过圆心且垂直于切线的直线必经过切点
125.推论2:经过切点且垂直于切线的直线必经过圆心
126.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127.圆的外切四边形的两组对边的和相等
128.弦切角定理:弦切角等于它所夹的弧对的圆周角
129.推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
131.推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
132.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
133.推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134.如果两个圆相切,那么切点一定在连心线上
135.①两圆外离d﹥R+r
②两圆外切d=R+r
③两圆相交R-r﹤d﹤R+r(R﹥r)
④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)
136.定理:相交两圆的连心线垂直平分两圆的公共弦
137.定理:把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138.定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139.正n边形的每个内角都等于(n-2)×180°/n
140.定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141.正n边形的面积Sn=pnrn/2p表示正n边形的周长
142.正三角形面积√3a/4a表示边长
143.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144.弧长计算公式:L=n∏R/180
145.扇形面积公式:S扇形=n∏R/360=LR/2
146.内公切线长=d-(R-r)外公切线长=d-(R+r)
关于“初中三年数学哪一年最难”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[善子源]投稿,不代表盛龙号立场,如若转载,请注明出处:https://www.snlon.net/sn/2353.html
评论列表(3条)
我是盛龙号的签约作者“善子源”
本文概览:网上有关“初中三年数学哪一年最难”话题很是火热,小编也是针对初中三年数学哪一年最难寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。初三。...
文章不错《初中三年数学哪一年最难》内容很有帮助